A Comparison of Ground Reaction Forces During Treadmill and Overground Walking in Transfemoral Amputees

Paige Paulus1,2, Tom Gale3, Jacob Levy2, William Anderst3

1Department of Physical Therapy, 2Department of Bioengineering and 3Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA

Biodynamics Lab website: bdl.pitt.edu

Introduction

Why This is Important

- As of 2005, 1.6 million people were living with limb loss, with this number projected to double by the year 20501.
- Treadmill and overground walking are used to quantitatively characterize gait in individuals with lower limb amputation.

What is Known

- In healthy adults, peak vertical ground reaction force (GRF) is greater during overground walking than during treadmill walking2.
- Patients with transfemoral amputation have greater vertical and anterior/posterior GRF in their sound limb compared to their prosthetic limb3.

What is Unknown

- Are GRF data collected during treadmill walking representative of GRF data collected during overground walking in individuals with transfemoral amputation?

Aim

- Aim: Compare overground and treadmill GRF in subjects with transfemoral amputation

Hypotheses

- GRF is greater on the sound side during overground and treadmill walking.
- GRF is greater during overground compared to treadmill walking.

Methods

Subjects

- 11 Individuals with transfemoral amputation (age 24 to 63 years; weight 59 to 130 kg, height 1.6 to 1.9 m).

Data Collection

- 10 overground and 2 to 10 treadmill walking trials were collected for each participant.
- Overground: Participants walked across a 7 m lab walkway, taking 1 to 3 steps on an instrumented treadmill (Bertec Corp.) at the midpoint each trial.
- Treadmill: Walking speed was set to match overground speed. 9 to 12 steps were recorded per trial.
- GRF collected at 1000 Hz for all trials.

Data Processing

- GRF data was filtered using a 4th order Butterworth filter with a 20Hz cutoff frequency.
- GRF data were normalized to body weight (%BW).
- Heel strike and toe off were identified using a threshold of 50N vertical GRF.
- A validated volumetric model-based tracking technique4 was used to match the subject-specific bone models to the biplane radiographs with a precision of 1.2° and 0.5 mm (Figure 1).
- GRF variables were averaged over all trials for each subject.

Data Analysis

- Outcome variables were AP, ML and vertical GRF peaks and impulses (area under the curve).
- A paired t-test was performed to compare prosthetic and sound limb outcomes as well as walking surface for each GRF parameter.
- Significance was set at p < 0.05.

Results

- Sound side loading was greater than prosthetic side loading during overground and treadmill walking (Figures 1, 2).
- GRF parameters were greater during overground compared to treadmill walking (Figure 1, 2).

Discussion

- Our first hypothesis was supported: GRF is greater on the sound side.
- This confirms that individuals who have an amputation favor loading their sound limb during overground and treadmill gait.
- Our second hypothesis was supported: GRF is greater during overground walking.

Clinical Significance

- Given the differences in GRF between overground and treadmill gait, clinicians should be wary of evaluating kinetics, socket fit, and alignment during treadmill walking.
- Researchers need to be aware of limitations associate with testing persons with an amputation during treadmill walking.

References and Acknowledgements