Static Clinical Radiographs Do Not Fully Capture Dynamic Instability of the Lumbar Spine in Degenerative Spondylolisthesis Patients

Malcolm Dombrowski1, Bryan Rynearson1, Clarissa LeVasseur1, Zach Adgate1, William F. Donaldson1, Joon Lee1, Ameet Aiyangar1,2 and William Anderst1

1.Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA,
2. Swiss Federal Laboratories for Materials Science and Technology, Dubendorf, Switzerland
Biodynamics Lab website: bdl.pitt.edu

Introduction

Background
- The efficacy of fusion for patients with degenerative lumbar stenosis with concomitant spondylolisthesis remains a contentious topic among spine surgeons1,2.
- Evidence suggests better outcomes with the addition of fusion3 although there are patients that can achieve adequate clinical outcomes after decompression alone4-5.
- The challenge lies in prospectively identifying which patients would respond favorably to decompression alone.
- Currently, dynamic instability is measured on clinical functional radiographs (Figure 1).

Hypothesis
- Static radiographs underestimate the true degree of dynamic slip in lumbar spondylolisthesis patients.

Methods

Subjects
- Seven patients with symptomatic L3/L4 or L4/L5 lumbar spondylolisthesis (6 M, 1 F; age 66±5.4 years) provided written informed consent for this IRB approved study.

Data Collection
- Participant’s lumbar spine (L1-S1) was imaged during continuous flexion/extension of their torso through their maximal range of motion in a biplane radiographic imaging system (Figure 2).
- Images were obtained at 20 frames per second (4 ms pulsed exposures, 70-85 kV and 320 mA).

Data Processing
- 3D subject-specific models were created from high resolution computed tomography (CT) scans (0.5 mm x 0.5 mm x 1.25 mm) (Mimics 14.0).
- A volumetric model-based tracking process was used to track the 3D position and orientation of each vertebra in the biplane radiographic images (in vivo precision of 0.26° in rotation and 0.2 mm in translation when tracking lumbar vertebrae)11.
- Anatomic coordinate systems were created in each vertebra and used to calculate intervertebral flexion/extension and AP translation (slip)12 (Figure 3).
- Clinical measures of intervertebral flexion/extension and AP translation were measured on pre-surgical upright and full flexion static radiographs (Figure 1).

Statistical Analysis
- Paired t-tests were used to identify differences between static clinical imaging and dynamic imaging in terms of static slip in the upright position, maximum slip, and flexion range of motion, with significance set at p < 0.05.

Results

- Maximum slip during dynamic flexion was greater than what was seen in the static flexion-extension radiographs (2.7 mm vs 1.1 mm; p = 0.04) (Table 1).
- No significant differences between static and dynamic measurements were identified in intervertebral flexion ROM (4° vs 5.6° respectively, p = 0.173) or in the neutral position slip (6.7 mm vs 5.9 mm respectively, p = 0.46) (Table 1).
- Three of the seven (DS 1, 2, and 7) patients showed the greatest dynamic AP translation during the mid-range of flexion which subsequently diminished at end-range of flexion (Figure 4).

Table 1. Static clinical radiographic measurements compared to in-vivo dynamic measurements of intervertebral flexion, maximal slip and upright neutral slip in patients with DS

<table>
<thead>
<tr>
<th>Subject</th>
<th>Intervertebral ROM (°)</th>
<th>Maximum Slip (mm)</th>
<th>Upright Neutral Slip (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.0</td>
<td>11.0</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>7.0</td>
<td>6.9</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>7.7</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>4.2</td>
<td>1.9</td>
</tr>
<tr>
<td>6</td>
<td>3.0</td>
<td>4.2</td>
<td>1.3</td>
</tr>
<tr>
<td>7</td>
<td>5.0</td>
<td>3.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

P-Value 0.17 0.04 * 0.46

Discussion

- Static end-range clinical radiographs appear to underestimate dynamic slip that occurs during flexion in lumbar spondylolisthesis patients. Half of these patients show maximal change in AP translation during mid-range of motion.
- Four of the seven patients with lumbar degenerative spondylolisthesis had an increase slip of more than 1.5 mm on dynamic imaging, while the other three had a difference in slip less than 0.3 mm when compared to static clinical imaging.
- Motion >1.25 mm has been previously shown to be a predictor of delayed instability following decomposition without fusion for spondylolisthesis8.

Clinical Significance
- This result suggests that there may be a subgroup of patients that have dynamic instability that is missed using static clinical imaging. Further studies with larger patient populations are necessary to further explore this phenomenon.

References and Acknowledgements


ACKNOWLEDGEMENTS: This work was supported by NIH 5R44AR064620 and a Swiss National Science Foundation Ambizione Career Grant (PZ00P2_154855/1)