Kinematics and Arthrokinematics in the Chronic ACL-Deficient Knee are Altered Even in the Absence of Instability Symptoms

1Chen Yang MD PhD, 1Yatsutaka Tashiro MD PhD, 2Andrew Lynch PT PhD, 1Freddie Fu MD, 1William Anderst PhD
1Departments of Orthopaedic Surgery and 2Physical Therapy, University of Pittsburgh, Pittsburgh, PA, USA
www.bdl.pitt.edu

Introduction

Background
- Some patients cope with ACL-deficiency and return to sports and daily activities without symptoms of instability1-3.
- The effect of chronic ACL-deficiency on knee kinematics remains unknown.

Purpose
- To analyze the in vivo kinematics and arthrokinematics of chronic ACL-deficient knees.

Hypotheses
- ACL-D knees would demonstrate altered tibiofemoral contact path location in comparison to the unaffected side.
- ACL-D knees would demonstrate increased anterior translation and internal rotation in comparison to the unaffected side.

Methods

Subjects
- Eight participants with unilateral chronic ACL-D (4 M, 4 F; average age 42±16 years; mean 67 months since ACL-injury).
- Inclusion: no instability, locking or catching sensations; able to participate in daily activities and some sports without symptoms of instability; positive Lachman and pivot-shift test; no other ligament injuries or meniscal tears requiring resection of more than one-third of the radial width of the meniscus; uninjured contralateral knee.

Data Collection and Data Processing

Figure 1: A) Participants performed three trials of level walking at 1.2 m/s and three trials of downhill running at 2.5 m/s (10º slope) on an instrumented treadmill while B) synchronized biplane radiographs were collected at 100 and 150 images per second, respectively through the first 25% (walking) and 20% (running) of the gait cycle. C) Bilateral knee CT scans were collected and D) used to create 3D bone models. E) 3D knee kinematics were determined using a validated CT model-based tracking process4. F) Knee translations were calculated from femur origin to tibia origin and knee rotations were calculated using standard methods5.

Contact Path Calculation
- The path of the center of closest contact between the tibia and femur was determined using the distance-weighted centroid of the closest contact region on the femoral bone surface6 (Figure 2).

Discussion

Main Findings
- In participants with chronic ACL-D without symptoms of instability, anterior translation of the tibia (ATT) was significantly larger during the early support phase of level walking and downhill running compared to the unaffected contralateral knee.
- Subchondral bone closest contact points were more anterior on the lateral femoral condyle in the ACL-D knee during the early support phase of downhill running.

Limitations
- Small sample size
- Wide range of age and time post-injury
- Only straight-ahead movements tested (no pivot movements)

Clinical Significance
- Chronic ACL-D knees, even in the absence of reported instability, appear to demonstrate subtle changes in tibiofemoral kinematics and arthrokinematics.
- Although some individuals with ACL-D knees are able to return to sports and daily activities without symptoms of instability, these individuals may still be susceptible to arthritic changes associated with abnormal joint kinematics and arthrokinematics.

References