Introduction

- Previous research has failed to analyze in vivo kinematics of isolated anterior cruciate ligament reconstruction (ACLR) versus ACLR plus meniscus injury\(^1,2\).
- Aim: assess the effect of concomitant meniscus injury on knee kinematics in patients undergoing ACLR.
- Hypothesis: (1) Anatomic ACLR in the absence of meniscus injury restores native knee kinematics, and (2) Anatomic ACLR in the presence of medial meniscus injury results in altered knee kinematics.

Methods

Kinematics Testing 24 months post-ACLR Groups

- ACLR +/- meniscus pathology (49 Subjects)
- Isolated ACLR (24 Subjects)
- ACLR + medial meniscus tear (11 Subjects)
- ACLR + lateral meniscus tear (9 Subjects)
- ACLR + bilateral meniscus tears (5 Subjects)

Data Acquisition

- Dynamic biplane radiography (150 frames/s, 1 ms pulse duration)
- 6-degree-of-freedom tibiofemoral kinematics during downhill running at 2.5 m/s on a 10° downhill slope
- Volumetric model-based tracking process (previously validated in vivo\(^2\)) used to determine bone motion (Figure 1)
- Bilateral high resolution (0.31 x 0.31 x 0.6 mm voxels) computed tomography (CT) scans used to create anatomic coordinate systems and 3D models
- Average kinematics (3 trials) of footstrike through push-off collected for each knee
- Initial single-support phase of the gait cycle (0-10%) analyzed

Figure 1

- Left: Subject performing downhill running within the DSX system
- Middle: The volumetric model-based tracking process used to determine bone motion
- Right: Anatomic tibiofemoral coordinate systems to assess translation and rotation

Statistics

- Kruskal-Wallis tests (non-parametric ANOVA) + post-hoc exact Wilcoxon rank-sum test with Benjamini Hochberg P value adjustments for multiple comparisons
- Side-to-side knee differences in kinematics
 - Wilcoxon signed rank test for paired non-normal data for each meniscus group
 - Cohen’s D effect sizes for each difference
 - Effect size thresholds: 0.2, 0.5, and 0.8 :: small, medium, and large magnitude, respectively\(^4\)

Results

<table>
<thead>
<tr>
<th>Meniscal Tear Characteristics and Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meniscus Status</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Isolated Medial Meniscal Tear</td>
</tr>
<tr>
<td>Isolated Lateral Meniscal Tear</td>
</tr>
<tr>
<td>Bilateral Meniscal Tear</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kruskal-Wallis Results Assessing Interactions Among Meniscus Status Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematics Measurement</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>P Value</td>
</tr>
</tbody>
</table>

Figure 2

Anterior tibial translation in ACLR and contralateral knees. Shaded zone indicates SEM for each group either above (ACLR knee group) or below (contralateral knee group) the mean.

- Significant Kinematics Interaction: Anterior tibial translation (ATT) (p = 0.007)
- Significant Between Groups Differences in ATT:
 - Intact menisci vs medial meniscus tears (p = 0.036)
 - Medial meniscus vs lateral meniscus tears (p = 0.025)
- Within Group ACLR vs Contralateral Knee ATT Differences:
 - Intact menisci: (mean ± Standard Error of the Mean (SEM)): 13.1 ± 0.7 mm vs 12.6 ± 0.5 mm; p = 0.15; Cohen’s D: 0.147; n = 24 (Figure 2A)
 - Medial meniscus tears: (15.4 ± 1.0 mm versus 13.2 ± 1.0 mm; p = 0.024; Cohen’s D: 0.658; n = 11) (Figure 2B)

Discussion

- Isolated ACLR in the absence of meniscal injury demonstrated no significant difference from native knee kinematics 24 months after surgery
- Associated medial meniscus injury in the setting of ACLR leads to increased ATT

References and Acknowledgement

- This research was funded by NIH grant RO1 AR056630.